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Abstract—Multi-modal generative AI (Artificial Intelligence)
has attracted increasing attention from both academia and
industry. Particularly, two dominant families of techniques
have emerged: i) Multi-modal large language models (LLMs)
demonstrate impressive ability for multi-modal understanding;
and ii) Diffusion models exhibit remarkable multi-modal pow-
ers in terms of multi-modal generation. Therefore, this paper
provides a comprehensive overview of multi-modal generative
Al, including multi-modal LLMs, diffusions, and the unification
for understanding and generation. To lay a solid foundation
for unified models, we first provide a detailed review of both
multi-modal LLMs and diffusion models, respectively, including
their probabilistic modeling procedure, multi-modal architecture
design, and advanced applications to image/video LLMs as well
as text-to-image/video generation. Furthermore, we explore the
emerging efforts toward unified models for understanding and
generation. To achieve the unification of understanding and gen-
eration, we investigate key designs including autoregressive-based
and diffusion-based modeling, as well as dense and Mixture-of-
Experts (MoE) architectures. We then introduce several strategies
for unified models, analyzing their potential advantages and
disadvantages. In addition, we summarize the common datasets
widely used for multi-modal generative AI pretraining. Last
but not least, we present several challenging future research
directions that may contribute to the ongoing advancement of
multi-modal generative Al

Index Terms—Multi-modal Generative AI, Multi-modal Large
Language Model, Diffusion Model, Unified Understanding and
Generation

I. INTRODUCTION

Multi-modal generative Al (Artificial Intelligence) has re-
ceived increasing attention recently with the advent of (multi-
modal) large language models (LLMs) and diffusion models.
Two typical models of multi-modal generative Al are GPT-
4V [1] and Sora [2] from OpenAl, which have produced great
impacts on both academia and industry. To compare GPT-4V
and Sora in terms of functionality, GPT-4V targets multi-modal
understanding, and Sora aims at visual generation — GPT-4V
enables the LLM to understand visual input via generating
relevant texts, while Sora serves as a text-to-video generation
model which outputs visual signals given textual input. To
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make comparisons in terms of probabilistic modeling, GPT-
4V is a multi-modal LLM with autoregressive probabilistic
modeling, while Sora is a multi-modal video generation model
with diffusion denoising modeling.

As such, there naturally arises a question: “Is it possible
to establish a unified multi-modal generative model for simul-
taneous understanding and generation?” And if the answer is
yes, what would such a model be, either similar to multi-modal
LLM or diffusion, or in a new form? To capture the relations
among different modalities, is it a good idea to adopt an early-
fusion strategy (such as Chameleon [3]), or just straightfor-
wardly align a pretrained visual model with a language model
(such as LLAVA [4])? To further unify understanding and
generation, is it sufficient to employ Mixture of Experts (MoE)
strategies or only use a dense model?

To answer these questions, we conduct deep and compre-
hensive discussions of multi-modal generative Al in this paper,
whose overall organization is illustrated in Fig. 1. Specifically,
we first present a systematic review of existing works on multi-
modal LLM (Sec. II) and multi-modal diffusion (Sec. III), cov-
ering mathematical preliminaries, model architectures, fusion
strategies, recent advances, and applications. Then we present
our insights on unified models for simultaneous understanding
and generation in Sec. IV. Besides, we further summarize
video/visual-language datasets for multi-modal generative Al
pretraining in Sec. V. Last, we provide future directions that
deserve further investigation for multi-modal generative Al.

In this paper, our scope primarily lies in multi-modal un-
derstanding, generation, and their unification. Some concepts
widely studied in the field of LLMs, such as in-context
learning, post-training techniques (e.g., supervised fine-tuning
and reinforcement learning), sparse attention, and positional
embeddings, are important but not the main focus of this
survey. Readers interested in these topics are referred to related
surveys such as [5], [6]. Instead, we focus on recent high-
quality works adapted to the multi-modal generative setting,
providing a comprehensive overview of the mechanisms that
enable multi-modal understanding and generation.

We would like to point out that although several insightful
surveys have been conducted on multi-modal understand-
ing [7]-[9], visual generation [10]-[14], and both [15], [16],
this work differs from them in comprehensive discussions on
models for the unification of understanding and generation
in addition to reviewing them separately, thus contributing
to the ongoing advancement of multi-modal generative Al
We highlight recent advances, categorize existing approaches,
introduce related datasets, and share insights for future direc-
tions. In summary, we make the following contributions.
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Fig. 1. The overall organization of this paper.

o« We comprehensively overview multi-modal generative
Al, covering multi-modal LLMs for multi-modal under-
standing and diffusion models for visual generation.

o We propose a structured taxonomy of unified models for
multi-modal understanding and generation, and provide
thorough discussions on them.

¢ We share our insights on promising future directions to
highlight the trending research for advances in multi-
modal generative Al

II. MULTI-MODAL LLM FOR UNDERSTANDING

Multi-modal LLMs have recently become dominant in the
field of understanding. In this section, we will review the
literature on the multi-modal LLMs.

A. Preliminaries

We first introduce some preliminaries involving the LLM,
vision-language pretraining, and visual tokenizers.

1) LLM Autoregressive Probabilistic Modeling: The core
component of multi-modal LLMs is the LLM, which receives
the multi-modal input, including the user’s instructions, ques-
tions, and visual information, and then outputs the answers to
the user in a text-generation form. The LLM is basically an
autoregressive model that tries to predict the next word based
on all the previous words, as shown in Eq. (1).

p(w) = HPGL(wi|w<i)7 (1)
i=1

where 67 denotes the parameters of the LLM, which is
generally composed of several layers of transformers [17].

Note that LLM can only receive the text tokens as its input.
The next important problem for multi-modal LLM is how
to enable LLM to understand the visual information. To
tackle the problem, most existing works [4], [18], [19] try to
align the LLM with the visual encoders from vision-language
pretraining tasks, such as CLIP [20]. More recently, there have
been some attempts [3] to directly transform the images into
discrete visual tokens so that the text and visual tokens can
be tackled by the autoregressive LLM together. Next, we will
introduce preliminaries about vision-language pretraining and
visual tokenizers.

2) Vision-Language Pretraining: Vision-language pretrain-
ing (VLP) aims to learn aligned representations of images and
texts by leveraging large-scale image-text pairs. One of the
most influential VLP models is CLIP [20], which learns a
joint embedding space where semantically related images and
texts are mapped close to each other.

CLIP consists of two separate encoders: a visual encoder
(typically a Vision Transformer [21] or ResNet [22]) and a text
encoder (usually a Transformer). Given a batch of image-text
pairs, CLIP is trained with a contrastive loss that encourages
the embeddings of matched image-text pairs to be close while
pushing apart the embeddings of mismatched pairs.

The pretrained CLIP model has been widely used in multi-
modal LLMs to inject visual understanding into LLMs. Typ-
ically, visual features extracted by the CLIP image encoder
are projected into the input space of LLM through a learned
adapter or alignment module [4]. This allows LLMs to reason
over both linguistic and visual information in a unified manner.

3) Visual Tokenizer: Inspired by language models where
each word is tokenized by a discrete tokenizer, a series of
works also transform images into discrete tokens. Typical
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Fig. 2. Illustration for the framework of the visual tokenizers.

visual tokenizers include the VQ-VAEs [23], [24] and VQ-
GANSs [25], [26], whose overall framework is shown in Fig. 2.
We will begin our discussion with VQ-VAE. Basically, VQ-
VAE works as an auto-encoder with an encoder E(-) and a
decoder D(-). Given an image x, VQ-VAE first encodes it
with an encoder E(-) into a lower-dimensional continuous
vector E(x). Then, the continuous vector is discretized using
a codebook Z = {2}/ . The codebook functions similarly
to a word embedding table in NLP, where K corresponds
to the vocabulary size, and each zp € R"™ represents a
visual prototype analogous to a word embedding. With the
encoded vector F'(x) and the codebook Z, we obtain a discrete
representation z, of the image by finding the nearest neighbor
of E(z) in Z and use it to reconstruct the image with the
decoder: & = D(z,). This provides a way to convert between
images and discrete tokens.

Compared to VQ-VAEs, VQGAN [25], [26] utilizes a GAN

perceptual loss to replace the L2 reconstruction loss, which
helps to learn a rich codebook. We use a simple example to
illustrate the tokenization process. If we have an input image
of size H x W x 3, after the encoder E/, we obtain a lower-
dimension vector F(z) of size h X w X n., where h < H,
w < W, and n. denote the dimensions of the code. This
means that we can obtain h X w vectors of dimension 7., and
for each vector we will find its nearest neighbor in the code
book for discretization so that we will finally obtain a discrete
sequence of length h x w to represent the image.
Remark. On the one hand, VQGAN and VQ-VAE can be
used as visual tokenizers to transform an image into discrete
tokens, which enables it to be received by LLMs for visual un-
derstanding. On the other hand, they can be used to compress
an image into a lower-dimensional space, which motivates the
well-known latent diffusion model (LDM) [27].

B. Multi-modal LLM Architectures

We categorize existing multi-modal LLM architectures into
two branches, the alignment architectures and the early-fusion
architectures, as shown in Fig. 3. Most existing works [4], [18],
[19] adopt the alignment architecture, which aims to align the
vision model from the vision-language pretraining with the
pretrained LLM. This branch of models relies on the vision-
language pretraining to understand the visual input. After
obtaining the embedding of the image, an alignment module
such as a projector [4] or Q-Former [28] is used to align the
image embedding with the LLM space. To train the alignment
module, some text-image or text-video pairs are required to

Multi-Modal Auto-Regressive

Large Language Model (LLM) Language Model
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Alignment t 1
Module Visual Text
t Tokenizer Tokenizer
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Vision Model t t
t Input Image Text Instructions

Input Image  Text Instructions

Alignment Architecture Early-fusion Architecture

Fig. 3. Two branches of multi-modal LLM architectures, including (i) the
alignment architecture by aligning pretraining vision models with LLM and
(ii) the early-fusion architecture which receives mixed visual and text tokens
and relies on autoregressive modeling for multi-modal understanding.

input the model. A typical way to align is to make the LLM
output the caption of an image given an image embedding.
In contrast, as shown on the right of Fig. 3, the early-fusion
architectures [3], [29] do not rely on a pretrained vision model
to obtain the semantics of the input image. Instead, similar
to NLP, where each word is mapped to a token, the early-
fusion architecture maps each visual input into visual tokens
through a visual tokenizer. Then, a multi-modal autoregressive
language model will receive the mixed text and visual tokens
and output the user’s desired answers.

Next, with the overall architecture in mind, we will intro-
duce recent advances in image LLMs and video LLMs.

C. Image LLM

We will follow the multi-modal LLM architectures section
and elaborate on the latest advancement of image LLM.

1) Alignment-Architecture Image LLM: This architecture
treats the image input as an additional extension. The vision
encoders are usually frozen and the alignment modules and
LLM are tuned based on various strategies to align the multi-
modal content and instructions.

a) Vision Encoder is a module that extracts crucial infor-
mation from images. Common generic vision encoders include
ResNet [30], the CLIP-ViT encoder [20], and ImageBind [31].
ResNet and CLIP are pretrained on image-text modalities,
while ImageBind aligns embeddings from six modalities into
one shared space, enabling vision encoders to capture richer
information.

b) Alignment Module, also named projector, adapter, etc.,
aims to mitigate the gap between image features and lexical
word tokens and further fuse two modalities. LLaVA [32]
adopts a simple but effective linear projection to convert
image features into word token embedding space and then
it concatenates image tokens and word tokens. Such align-
ment only involves image transformation, limiting interaction
with texts, and is not flexible in the visual token number.
Resampler [33] technique maps varying-size features to a fixed
number of tokens. BLIP-2 [28] and MiniGPT-4 [34] employ
Q-former [28] before linear projections to reduce tokens. Q-
former incorporates text semantics and models the interaction
between image features and text inputs with learnable queries
to enhance the most useful visual content for LLM. Some
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works focus on preserving locality during projection, such as
Honeybee [35], which introduces a locality-enhanced projector
to maintain spatial structure. Others prioritize efficiency, such
as TokenPacker [36], which adopts a coarse-to-fine strategy to
compress visual tokens while retaining important details.

2) Early-fusion Architecture Image LLM: The alignment ar-
chitecture utilizes the power of off-the-shelf LLM and requires
lower computations, but pretrained vision encoders would have
information loss and be infected by inductive biases because of
the gap between limited pretraining tasks and real demands for
image LLM, such as supporting flexible resolution. Therefore,
as shown in Fig. 3, another line of work aims to train a multi-
modal LLM from scratch, where both images and text words
are converted into a series of tokens.

Pioneer work Fuyu [37] adopts linear projections on image
patches in spatial order and trains a transformer decoder taking
the visual and word token sequence as input. Despite limited
performance, it reveals a new technical fashion. Google fol-
lows this fashion, whose Gemini [29] processes the interleaved
image and other modalities from the beginning. Chameleon [3]
trains an image tokenizer that encodes a 512x512 image into
1024 discrete tokens from a codebook of size 8192. Early-
fusion Architecture requires more computation and is more
difficult to converge, leaving challenges for future exploration.

3) Challenges in Image LLM: (i) Fine-grained visual
concept understanding, where more tokens help encode more
detailed information at the cost of causing redundant com-
putation. Chat-UniVi [38] proposes dynamic visual tokens to
allocate more computations on important details. An important
part of fine-grained understanding is the spatial awareness
of object concepts. AnyRef [39] applies RolAlign to encode
regions and designs a segment encoder-decoder to learn seg-
mentation from the image LLM’s token outputs, which is
similar to OMG-LLaVA [40], who generates pixel- and object-
centric visual tokens before projections and decodes segmenta-
tion tokens from LLM’s output by OMG-Seg. Different from
segmentation supervision, VisionLLM [41] and Virtron [42]
use text supervision such as bounding and polygon descrip-
tions by flexible instruction tuning. Fine granularity modeling
offers some explanations for LLM. (ii) Hallucination involves
errors in objects, attributes, and relations in the forms of
judgment or description [43]. Some works [44] try to reduce
biases in training data, while some mitigate hallucination by
improving model characteristics such as vision encoders [45]
or fusion mechanisms [46]. Human feedbacks [47] also play
an important role in reducing hallucination.

Remark. Currently, the alignment architecture still outper-
forms the early-fusion architecture in multi-modal under-
standing, e.g., with comparable parameters, the early-fusion
architecture Emu3 [48] achieves 75.1 score on VQAv2 [49]
benchmark and 58.5 score on MMBench [50] benchmark,
while the early-fusion architecture LLLAVA-1.6 achieves 86.8
and 67.4 score, respectively. The advantages and disadvantages
of the two architectures are as follows: (i) The advantage lies
in the capability of utilizing the pretrained knowledge from
the vision encoder and LLM. The vision-language pretraining
enables the output of the vision encoder to contain semantic
meanings. Only the alignment module needs to be trained,

which makes this paradigm resource-friendly. (Sometimes
other modules are also learnable for better performance.)
However, its ability is also limited by the pretrained vision
encoder and LLM, e.g., the pretrained CLIP vision encoder
often struggles with multiple objects, making the multi-modal
LLMs based on CLIP inherit the limitation. (ii) The disad-
vantage comes from the fact that the early-fusion architecture
may have a higher potential, because all its parameters are
trained from scratch. However, training from scratch makes the
early-fusion architecture face two challenges: (a) a good visual
tokenizer needs to be trained, and (b) more resources will be
needed to train the multi-modal autoregressive model. First,
since the visual tokenization process involves compression
and discretization, there inevitably exists visual information
loss. How to train a tokenizer that contains rich visual in-
formation still remains a challenging problem. Second, the
visual tokenizers are generally trained with the image recon-
struction objective, which in essence belongs to a pixel-level
task instead of a semantic-level task. This training strategy
requires that the downstream multi-modal LLMs should have
an additional ability to learn semantic meanings from the
pixel-level information, compared to the original LLMs, which
are only expected to understand semantic tokens. Therefore,
multi-modal LLMs tend to require more data for training.

D. Video LLM

Following the success of Image LLMs, researchers start
exploring the training of Video LLMs [51]. Typically, videos
are viewed as sequences of image frames (some Video LLMs
incorporate other modalities like audio or speech), so Video
LLMs have a higher computational complexity. The challenge
of collecting high-quality video datasets further complicates
the training process, making early fusion architectures com-
putationally exhaustive. As a result, almost all the existing
Video LLMs adopt the alignment architectures.

1) Alignment-Architecture Video LLM: The video LLM
architecture is similar to that of Image LLMs with align-
ment architectures. By sampling a fixed number of frames
or using a fixed frames-per-second (FPS) rate, videos are
reduced to a limited set of images. The visual embeddings
of each image are then extracted using a visual encoder.
These features are sequentially concatenated in the order
of the frames and connected to the LLM via an alignment
module. In earlier works, VideoChat [52] utilizes a Q-former
structure as the alignment module, while VideoLLaMA [53]
introduces an audio encoder and an audio Q-former to handle
audio signals. Video-ChatGPT [54] takes a different approach
by average-pooling each frame’s patch embeddings along
the spatial and temporal dimensions before using a linear
layer as the alignment module. Training Video LLMs also
follow an “alignment then instruction tuning” strategy. While
additional GPT-annotated or human-annotated video datasets
are collected, image datasets can also be leveraged by treating
images as single-frame videos.

Recent successful efforts focus on improving performance
by refining the alignment module and scaling up the model and
dataset sizes. For instance, VideoLLaMA?2 [55] improves the
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alignment module to model the connections across temporal
and spatial dimensions. It also gathers datasets for tasks
such as captioning, classification, and question answering.
Qwen2.5-VL [56] and InternVL3 [57] leverage diverse train-
ing data, including images, videos, and interleaved image—text
pairs, to build powerful vision-language models.

2) Challenges and Limitations in Video LLM: Compared to
Image LLMs, Video LLMs face two unique challenges. The
first challenge is understanding videos at a finer granularity,
specifically the comprehension of video segments and the
relationships between these segments. The second challenge
is understanding long-form videos, such as movies, within the
limited context length of LLMs.

For segment-level video understanding, VTimeLLM [18]
transforms the temporal video grounding and dense video
captioning tasks into a sequence-to-sequence format. After
alignment training, it introduces an additional boundary per-
ception training, leveraging large-scale multi-event video-text
data to enhance awareness of event boundaries and times-
tamps. Finally, it incorporates temporal reasoning data during
instruction tuning. Some approaches [58], [59] adopt training-
free methods, where sampled frames are individually cap-
tioned, and each frame’s timestamp and caption are input into
an LLM via carefully crafted prompts, allowing the LLM’s
powerful reasoning capabilities to comprehend each segment.

For long-form videos, traditional Video LLMs struggle
with input limitations. For example, a Q-former in BLIP-
2 encodes an image into 32 tokens; sampling 256 frames
results in 8K tokens, which reaches the maximum context
length of most LLMs. However, this represents less than 5
minutes of video at a sampling rate of 1 FPS. Therefore,
more efficient representations are necessary for processing
long-form videos like movies. MovieChat [60] introduces a
memory consolidation mechanism that merges similar im-
age tokens once the token limit is reached. LWM [61] and
LongVA [62] handle long video inputs by using LLMs with
larger context lengths and more efficient attention mechanisms.
Some methods [18], [63] reduce the number of tokens per
frame, representing each frame with only 1 or 2 tokens on
average. Other approaches [64] convert long-form videos into
text corpus using image captioning and employ LLMs as
agents to search for specific answers within the text corpus.

Remark. Despite the advancements in Video LLMs, nearly
all existing models rely on sampling frames and encoding
them individually through image encoders. This approach may
be favored due to several reasons: image encoders are less
computationally intensive compared to video encoders, they
offer better alignment with textual data, and they facilitate
unification with Image LLMs. However, this methodology
comes with a significant limitation. Specifically, the process of
sampling frames can lead to the complete loss of information
that occurs between sampled frames. As a result, these models
fail to capture the continuous motion and trajectories of
objects, which are essential for understanding dynamic scenes
and activities within a video.

E. Speech LLM

Similar to Image LLMs, the architecture of Speech LLMs
can generally be categorized into two types: alignment-based
architectures and early-fusion architectures [65].

1) Alignment-Architecture Speech LLM: This architecture
first extracts information from audio with pre-trained or fine-
tuned audio encoder and produces audio embedding.

a) Audio Encoder transforms raw waveforms into
time—frequency representations using conventional signal pro-
cessing techniques. The most commonly used audio encoders
are Whisper [66] and Conformer [67]. Whisper is an automatic
speech recognition (ASR) model with an encoder—decoder
Transformer architecture, similar to sequence-to-sequence
models in natural language processing. It is trained on 680,000
hours of multilingual, multitask supervised data collected from
the web, covering speech recognition, speech translation, and
language identification. Conformer (Convolution-augmented
Transformer) combines convolutional neural networks (CNN’s)
with Transformer blocks, effectively capturing both local and
global dependencies in speech signals. Other widely adopted
encoders include WavLM [68], a self-supervised speech rep-
resentation model built on the HuBERT [69] framework, with
improvements in pretraining objectives and data diversity.

b) Alignment Module also referred to as a projector,
connector, or adapter, maps audio embeddings into the text
embedding space, enabling them to be processed by the LLM
decoder for downstream understanding tasks. Several types
of alignment modules have been proposed. One common
approach is a multi-layer perceptron (MLP), which performs
a straightforward projection. Another is the Q-Former, which
introduces trainable query tokens that attend to audio fea-
tures and produce fixed-length embeddings compatible with
the LLM input space. A third approach is cross-attention,
which allows bidirectional interactions between audio and text
features, facilitating richer multimodal integration.

2) Early-fusion Architecture Speech LLM: This type of
Speech LLMs is inspired by visual tokenizers and adopts a
similar approach for audio. In this framework, raw audio is
converted into a sequence of discrete tokens that capture the
acoustic content and can often be decoded back into high-
quality audio. The generation of discrete tokens relies on
vector quantization (VQ). Building on VQ-VAE [70], which
introduced the idea of encoding continuous audio features into
symbolic representations via a learned codebook, modern ap-
proaches include self-supervised pre-trained audio tokenizers
such as HUBERT [69] and neural codec models such as En-
Codec [71]. Several representative works fall under this branch
of Speech LLMs. VALL-E [72] leverages EnCodec tokens to
achieve zero-shot speech synthesis. SpeechGPT [73] is trained
on paired unit-text data, where spoken audio is represented as
discrete speech units. AudioPaLM [74] integrates wav2vec-
style audio tokenization with language modeling to improve
multimodal speech understanding.

Now we have discussed the multi-modal LLM for under-
standing. Next, we will discuss another important topic of
multi-modal generative Al, i.e., multi-modal diffusion models
for generation.
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III. MULTI-MODAL DIFFUSION FOR GENERATION

Diffusion models have been one of the most successful gen-
erative models in visual generation given texts and are widely
used in multi-modal generation tasks. We present the famous
latent diffusion model [27], and discuss several advanced
diffusion-based text-to-image and text-to-video models.

A. Preliminaries

We will first introduce some preliminaries, including tra-
ditional generative models, i.e., generative adversarial net-
works (GANs) and Variational AutoEncoders (VAEs). We
then introduce diffusion probabilistic modeling and present a
comparison among GAN, VAE, diffusion, and flow matching
models, as illustrated in Fig. 4.

1) Generative Adversarial Networks: The generative ad-
versarial network (GAN) [75] is one of the earliest neu-
ral architectures designed to generate visual content such
as images [76] and videos [77]. The main idea of GANs
involves two networks: a generator G and a discriminator D.
Specifically, G aims to generate visual content from a noise
vector z, while D is trained to distinguish between real visual
samples = and generated ones G(z). These two networks are
trained in an adversarial manner: the generator tries to produce
outputs that can fool the discriminator, and the discriminator
strives to accurately classify real versus fake samples. The
training process forms a min-max game, where the generator
learns to generate increasingly realistic samples to deceive
a progressively stronger discriminator. The two networks are
mutually reinforcing, so the training objective is as follows:

mgin maz Eyp, logD(z) + E,np, log(l — D(G(2))), (2)

where z is sampled from p, that is usually a normal distribu-
tion and z is a sample from the real data distribution p,.

2) Variational AutoEncoder: Variational AutoEncoder [78]
(VAE) is another typical generative model. Unlike GANS,
autoencoders have an encoder-decoder architecture that uses
an encoder £ to present the visual content = to a latent code
z = &E(x) and a decoder D to reconstruct the data & = D(z)
x. However, normal autoencoders have no constraints on the
latent space, which makes them overfit the dataset easily. To
solve the problem, VAEs make a regularization to the latent
space and sample z from a distribution py, typically a Gaussian
distribution, where 6 is the parameters of the encoder-decoder
model. As the distribution py is unknown, VAE utilizes a
recognition model ¢ which serves as a variational approxi-
mation ¢4 to approximate pg and trains them jointly:

~
~

L0, ¢;2) = =Dk (g (2|2)||po(2)) + Eq, (2]2) [log po(z|2)],

3)
where Dy means the Kullback-Leibler divergence. ¢ can
be formulated as a differentiable estimator using the pa-
rameterization trick. To better generate visual content, many
efforts [70], [79], [80] have been made based on VAE. Sync-
DRAW [79] introduces a novel architecture that combines
VAE with a recurrent attention mechanism to create a unique
temporally dependent sequence of frames.

Despite the successful introduction of VAEs, they still face
a significant issue where the model ignores the information
in the latent space and relies solely on a powerful decoder
to reconstruct the data, a phenomenon known as “posterior
collapse”. To address this problem, the VQ-VAE [70] uti-
lizes discrete encoding to learn the prior and employs vector
quantization methods to prevent the latents from becoming
uninformative.

3) Diffusion Probabilistic Modeling: Compared to GANs
and VAEs, a new branch of generative models, diffusion
models [27], [81], [82] have become dominant in many tasks
such as text-to-image generation or text-to-video generation.
The core idea of diffusion modeling is to learn the transfor-
mation between the real data distribution ¢(x¢) and a standard
Gaussian distribution g(xr).

We briefly introduce the denoising diffusion probabilistic
model (DDPM), which includes the forward and backward
processes. In the forward process, given a real data sample
xg, it will go through a Markov process with more and more
random Gaussian noise added to the sample as follows:

q(zi|ai—1) = N(xe; /1 = Brwe—1, Bed), t = 0,1,--- | T (4)

where ¢ is the time step, 7T is usually large so that xp is
close to a Gaussian noise, and [, is a parameter to control the
noise schedule. Conversely, to achieve generation from random
noise, what DDPM does in the backward process is to learn
the following distribution:

p0($t71|xt) :J\/‘(Uﬁtfl;Ma(ﬂﬁt,t),ze(xtat)), (5)

where a neural network parameterized by 6 is designed to
predict the less noisy image x;_1. Then, with this denoising
network 6, we can denoise from a random noise z step by
step until we get a clean data sample x(, which could be an
image or a video, etc.
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Remark. GANs, VAEs, and diffusion models are all gen-
erative models. Compared to GANs, which train both the
generator and discriminator, the diffusion models have explicit
probabilistic modeling and only train a denoising network e,
which is more stable. Similarly, VAEs train both an encoder
and a decoder. Moreover, diffusions denoise for each image
T times in the training phase, resulting in 7" variants of each
image as augmentation. These augmented images in turn help
the denoising network to better model the data distribution
po(xo), leading to better generation results.

4) Latent Diffusion Model: As shown in Eq. (4) and Eq. (5),
the denoising process of diffusion models is conducted on the
pixels of each image in an iterative manner, which results in
high computational cost, especially when the generated image
is high-resolution. To tackle this problem, the latent diffusion
model (LDM) [27] proposed to conduct the diffusion process
in the latent space instead of the pixel space. The framework
comparison between the pixel-level diffusion model and LDM
is shown in Fig. 5. To reduce the computational cost, LDM
utilizes the encoder of VQGAN [25] to compress the image
into the latent space, z = FE(x), which has a much lower
dimension than the original image. Then, the diffusion process
in Eq. (4) and Eq. (5) will be conducted in the latent space.

Note that there is an additional input ¢ of the denoising
network that is for conditional generation, e.g., as for the text-
to-image generation task, c¢ could be the representation of the
text prompt [83]. Also, ¢ could be other conditions, such as
layout [84] or semantic maps [85]. Since most computation,
including the training and iterative inference, is conducted in
the lower-dimension latent space, the LDM model exhibits
high efficiency. Therefore, most text-to-image and text-to-
video models adopt the LDM structure.

5) Flow Matching: Compared with diffusion models such
as DDPM, Flow Matching [86] represents a new paradigm
in generative modeling, built upon Continuous Normalizing
Flows (CNFs). It introduces a simple yet intuitive training
objective that learns to approximate a target vector field, which
defines a probability path transforming noise samples into data
samples. In this way, diffusion processes can be viewed as
special cases within the broader Flow Matching framework.

Let z; denote a random variable drawn from an unknown
data distribution ¢(z1). We define a probability path p; such
that pp = p is a simple distribution, e.g., the standard normal
distribution p(z) = N (z|0,1), and p; approximates the data
distribution g. The goal of Flow Matching is to learn a vector
field that aligns the model’s probability path with this target
path from pg to p;.

Lrm(0) = ey o llve(z) — we(@)]%, (6)
where p;(z) denotes the target probability density path, u:(x)
is the corresponding vector field, and v (x, 8) is the learnable
CNF vector field parameterized by 6. Here ¢t ~ U[0,1] is
the uniform distribution, and = ~ p;(z). In essence, the Flow
Matching loss trains the neural vector field v; to regress toward
the target field u;. When the loss approaches zero, the learned
CNF model successfully reproduces the probability path p;(x).

(— o Diffusion Process
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Fig. 5. Comparison between pixel-level and latent diffusion models.

B. Text-to-Image Generation

As mentioned in the preliminary part, diffusion models can
be broadly categorized into two branches: pixel-based and
latent-based [87]. In the early development stage, the denoising
process is typically applied directly in the pixel space. For
instance, GLIDE [88] is a pioneering work in photorealistic
image generation with text guidance, using a 3.5 billion param-
eter diffusion model that employs a text encoder to condition
on natural language descriptions. GLIDE also explores the
use of CLIP guidance and classifier-free guidance in diffusion
models, finding that classifier-free guidance produces higher-
quality images. Besides, Imagen [89] follows GLIDE and
adopts classifier-free guidance for its pixel-based diffusion
model. The key difference between them is that GLIDE
trains a text encoder and a diffusion model together with
text-image pairs, while Imagen utilizes pretrained and frozen
large transformer language models, leveraging their strong
text understanding capabilities to enhance sample fidelity and
image-text alignment.

However, directly operating in pixel space requires substan-
tial computational resources, which leads to the appearance
of latent-based diffusion models. A milestone in this area
is Stable Diffusion [90], which introduces the concept of
latent diffusion model to strike a near-optimal balance between
complexity reduction and detail preservation. It incorporates
a pretrained VQGAN to compress images from pixel space
into semantic latent space. Compared to pixel-based diffu-
sion methods, Stable Diffusion not only achieves competitive
performance across multiple image generation tasks but also
significantly reduces both training and inference costs. Another
notable example of a latent-based model is DALL-E2 [91],
which combines a CLIP model and a diffusion model to enable
zero-shot text-guided image generation. DALL-E2 consists of
a CLIP image encoder and a diffusion decoder that inverts
the encoder, allowing for explicit generation of image rep-
resentations. This approach improves image diversity while
maintaining photorealism and caption similarity.

GLIDE [88], Imagen [89], Stable Diffusion [90], and
DALL-E2 [91] are all pioneering works that represent dif-
ferent technological pathways in the field of text-to-image
generation. These models have greatly inspired subsequent
research and development [92]-[94]. Despite their differences,
some common trends have emerged in their development.
First, latent-based diffusion methods have become increasingly
prevalent due to their advantages in conserving computational
resources and generating high-quality images. Second, com-
pared to classifier guidance [95], classifier-free guidance [96]
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Fig. 6. Comparison between U-Net-based diffusion model and Transformer-
based diffusion model.

is widely adopted in these works, where the label in a class-
conditional diffusion model is replaced with a null label at a
fixed probability during training. Third, U-Net traditionally
serves as the backbone of the diffusion model, facilitating
denoising and the gradual generation of high-quality images.

Despite its advantages in high-resolution image generation,
U-Net’s specific structures, such as ResBlocks and convolu-
tional operations, limit its scalability. In contrast, Transform-
ers, which are better suited to handle larger-scale data and
tasks, are emerging as strong contenders to U-Net. The Dif-
fusion Transformer (DiT) [97] represents a class of diffusion
models that replaces the commonly used U-Net backbone with
a transformer backbone, as shown in Fig. 6. This approach
is supported by empirical findings suggesting that the U-Net
inductive bias is not crucial to the performance of diffu-
sion models. Additionally, utilizing a transformer backbone
enables the diffusion model to leverage the best practices
of transformers, such as architectural design and training
paradigms, along with their good properties, such as scalabil-
ity, robustness, and efficiency. Specifically, DiT adheres to the
foundation of the Latent Diffusion Model (LDM) framework
and emulates the design of the Vision Transformer (ViT)
by introducing a comprehensive DiT design space, including
patch size, transformer block architecture, and model size. The
first layer of DiT, termed patchify, converts the spatial input
into a sequence of tokens by linearly embedding each patch.
Following the patchify step, the input tokens are processed
through a sequence of transformer blocks that incorporate
conditioning, such as time and label. The proposed transformer
design includes adaptive layer norm (adaLN) block, cross-
attention block, and in-context conditioning block. After the
final block, a transformer decoder translates the image tokens
into output predictions. The difference between U-Net-based
and Transformer-based diffusion models is illustrated in Fig. 6.

The three distinct transformer blocks are the core modules
of DiT, representing different ways to interact with multi-
modal information, including images, timestep, and condi-
tions. Their designs are inspired by the standard ViT block
design but incorporate small yet significant modifications. As
illustrated in Fig. 7, these blocks differ in how the image latent
interacts with the conditioning information. The adaLLN block
follows the adaptive normalization layers in GANS, replacing
the standard normalization layers in transformer blocks. The
scale and shift parameters in this block are determined by the
sum of the embedding vectors of timestep and condition. This
block adds the least Gflops to the model. The cross-attention
block introduces an additional multi-head cross-attention layer,
serving as the interaction module between the image latent and
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Fig. 7. Comparison between different DiT blocks from [97].

the timestep and condition. This block adds the most Gflops to
the model. The in-context conditioning block treats the tokens
from the timestep and condition in the same way as image
tokens, concatenating them along the sequence dimension.
This block introduces a moderate amount of Gflops.

Following the development of DiT [97], a growing number
of works are exploring variants of diffusion transformers with
improved performance. For instance, CrossDiT [98] combines
the adalLN-zero DiT block and cross-attention DiT block.
It simplifies adalLN-zero layers to adalN-single layers by
removing label conditioning and using only time conditioning
for scale and shift control. It incorporates text embeddings
from T5 [99] into the multi-head cross-attention layer. Another
notable variant is MM-DiT [100], which integrates the adalLN-
zero DiT block and in-context conditioning DiT block. This
model uses text embeddings from CLIP and timestamps to
condition the network, employs two separate sets of weights
for image and condition modalities, and concatenates image
and condition for the attention operation. Empirical experi-
ments show that both CrossDiT and MM-DiT outperform the
vanilla DiT in terms of validation loss, CLIP score, and FID.

The designs of diffusion transformer variants are distinct
from each other, but they basically derive from the three core
architectures proposed by DiT: the adal.N-zero block, the
cross-attention block, and the in-context conditioning block.
Currently, MM-DiT, which combines the adalLN-zero block
with in-context conditioning, represents the state-of-the-art
architecture. Its advantage lies in training the text modality
iteratively alongside the diffusion process in an in-context
manner rather than keeping it frozen, which produces a more
diverse semantic space.

C. Text-to-Video Generation

Due to the success of diffusion models in text-to-image
tasks, many researchers have introduced temporal information
to the diffusion models and utilized the capability of generat-
ing high-quality images to conduct text-to-video models.

The most intuitive approach to utilizing the text-to-image
model is modifying the self-attention mechanism, which gets
the text-to-video model without any additional parameters.
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Text2Video-Zero [101] is one of the pioneer works. Rather
than randomly initializing the latents of all frames indepen-
dently, Text2Video-Zero only samples the latent code z1. of
the first frame and applies At DDIM backward steps to obtain
z},. After that, Text2Video-Zero determines the global scene
and a camera motion direction, proposes a warping function
Wy to get all F frames from z1, to 2%, and then performs
a DDPM forward to get the initial latents. To keep the con-
sistency among different frames, Text2Video-Zero proposes
cross-frame attention, which uses keys and values from the
first frame to generate the images. Latent-Shift [102] is another
representative method. It proposes a novel Temporal-Shift
module that splits the latents along the channel dimension
and shifts the split channel along the temporal dimension
to keep the consistency of all frames. These methods have
fully used the powerful pretrained text-to-image models and
can generate videos with much higher resolution and quality
than traditional text-to-video methods using GANs and VAEs.
However, rather than capturing, training, and understanding the
temporal information, these methods are more like providing
a class of expert knowledge that can utilize the temporal
information from a human perspective. Thus, these methods
enjoy high generation efficiency, but the videos generated still
struggle with motion smoothness and video consistency.

To solve the problems, another kind of approaches [103]—
[105] not only inherits the architecture of the T2I models
but also makes efforts to introduce novel modules or mod-
ify the original structure to learn the temporal information.
VDM [103] is one of the earliest works that transferred the
T2I model to solve T2V tasks. VDM proposes a 3D U-Net that
modifies the diffusion architecture by changing each 2D spatial
convolutional layer into a 3D convolution. After that, for each
spatial attention block, VDM inserts a temporal attention block
that performs attention over all frames with relative position
embeddings to distinguish the ordering of frames. Make-a-
video [104] proposed a pseudo-3D convolutional and attention
layer, which consists of a spatial 2D convolutional layer and
a temporal 1D convolutional layer. Compared to 3D convo-
lution, this approach is much more efficient while facilitating
information sharing between the spatial and temporal axes. To
more flexibly apply the capabilities of the T2I model, such
as the customization and style transferring ability brought by
LoRA, AnimateDiff [105] keeps the original architecture and
only inserts a motion module after each pretrained layer. The
motion module consists of an input projection layer, several
temporal self-attention layers, and an output projection layer.
To avoid harming the original capabilities of T2I models,
AnimateDiff zero initializes the output projection layer.

As the attention-based architecture is more suitable for
capturing long-range contextual relationships, some meth-
ods [106], [107] adopt a DiT-based model to generate videos.
Latte [106] utilizes a video transformer as the backbone and
employs a VAE to encode videos into features, which is used to
extract tokens. Currently, compared to U-Net-based methods,
DiT-based methods can scale to larger datasets and parameters,
hence yielding relatively better performance. However, this
also implies a higher consumption of computational resources.
The DiT-based methods are commonly adopted in accomplish-

ing some outstanding applications within the industry.

D. Text-to-Speech Generation

Text-to-Speech (TTS) generation, also known as speech
synthesis, is one of the most fundamental tasks in multimodal
speech processing [108]. The development of TTS has evolved
from a three-stage pipeline to a two-stage framework, and
more recently, to end-to-end systems. Before the advent of
neural networks, TTS systems typically converted text into
linguistic features and then into acoustic features before decod-
ing them into waveforms. With the introduction of neural net-
works, this process was simplified, where text only needs to be
transformed into either linguistic or acoustic representations.
Most recent diffusion-based TTS models adopt a two-stage
approach: an acoustic model first generates acoustic features,
which are then converted into waveforms using a vocoder.
Moreover, several studies explore end-to-end TTS frameworks
that directly synthesize speech waveforms from text input.

For two-stage text-to-speech diffusion models, the acous-
tic model and vocoder are the two key components. The
acoustic model converts text into acoustic representations,
while the vocoder synthesizes waveforms from these features.
DiffWave [109] is one of the earliest diffusion-based speech
synthesis models, serving as a neural vocoder. It formulates
waveform generation as a DDPM task, where a neural network
learns to reverse a gradual noising process applied to real
waveforms. WaveGrad [110] also functions as a vocoder, intro-
ducing a continuous-time, score-based diffusion approach that
models a gradient field to guide the denoising process, rather
than relying on a discrete noise schedule. Grad-TTS [111]
is a diffusion-based acoustic model that extends diffusion
modeling from vocoders to full TTS systems. It generates
acoustic features from text through stochastic differential equa-
tions (SDESs), enabling a non-autoregressive acoustic modeling
framework. Diff-TTS [112] is another diffusion-based acoustic
model that further advances speech synthesis by formulating
the entire acoustic modeling process as a deterministic or
stochastic denoising procedure.

Compared with two-stage approaches, end-to-end text-to-
speech diffusion models reduce error propagation and produce
higher-quality speech, becoming the mainstream development
direction. For example, WaveGrad 2 [113] discards the two-
stage design of WaveGrad [110] and adopts an end-to-end
framework that directly generates audio from a phoneme
sequence. Moreover, recent systems such as TTS-1 [114] and
MiniMax-Speech [115] also follow end-to-end architectures
and achieve remarkable performance in speech generation.

IV. UNIFICATION OF UNDERSTANDING AND GENERATION

Until now, we have discussed both the multi-modal LLMs
and the multi-modal diffusion models, where the former works
well for multi-modal understanding and the latter exhibits a
powerful ability in visual generation. Then a natural question
arises: could we have a unified model that can simultaneously
work well for multi-modal understanding and generation?
Next, we will discuss this trending problem from the following
two perspectives: (i) the probabilistic modeling method, and
(ii) the model architecture.
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Fig. 8. Possible unified multi-modal understanding and generation frame-
works with different probabilistic modeling methods.

A. Probabilistic Modeling: Autoregressive or Diffusion?

The success of multi-modal large-language models has
clearly shown the great power of autoregressive modeling for
multi-modal understanding and text generation, so we believe
the autoregressive method should be included. Then, the next
question is how we enable the model with visual generation
ability. Based on existing works in Sec. II and Sec. III, we
provide the possible methods in Fig. 8, where we present the
autoregressive model and the joint autoregressive and diffusion
model. Next, we will elaborate on them in detail.

1) Autoregressive (AR) Model: Although diffusion models
have become dominant in visual generation, there are still
some recent attempts [3], [48], [116]-[120] on generating
visual content in an autoregressive manner. These works
will first try to map the input images and text into discrete
tokens, respectively. Particularly, the images are discretized
with visual tokenizers such as VQGAN or VQ-VAE. Then the
mixed text and visual tokens will be fed into a multi-modal
autoregressive model. After that, the model will output the
mixed text and visual tokens. Also, some special tokens such
as < sot >, < eoi > are used to indicate the start of the image
tokens and the end of the image tokens. Then the generated
text tokens will deliver how the model understands the input
multi-modal information, and the visual tokens will be sent
to the decoder of the VQ-VAE or VQGAN to reconstruct
images. Therefore, the autoregressive model can be used for
both understanding and visual generation.

Remark. Despite these efforts, the autoregressive method is
far from perfect — it basically assumes the existence of a
causal structure and causal attention, where previous tokens
are used to predict next tokens. However, this is not suitable
for image generation because it is difficult to determine, which
visual token should be the first and which one should be
the last. Therefore, a recent work VAR [121] tries to use
the next-scale prediction paradigm to generate images, where
the lower-resolution images are regarded as previous tokens
to predict (next) higher-resolution images. Unfortunately, the
scaling ability is still not verified in multi-modal understanding
and generation, and the model achieves a 1.73 FID score on
the ImageNet [122] benchmark for generation, falling behind
the diffusion model [123] which has a 1.35 FID score. In
general, joint AR and diffusion models outperform unified AR
models on visual generation tasks. For instance, EMU3 [48]
and Janus-Pro [124], both unified AR models, achieve 0.66 and
0.80 on the GenEval benchmark, respectively. In contrast, joint
AR-diffusion models such as Mogao [125] and Bagel [126]

reach 0.89 and 0.88, demonstrating the advantages of combin-
ing AR and diffusion components for visual generation.

2) Joint Autoregressive and Diffusion Model: Considering
the impressive visual generation ability of the diffusion model,
a more natural way for unified multi-modal understanding and
generation is to combine the autoregressive and diffusion mod-
els. In Fig. 8, we present two kinds of possible frameworks.

The first one is that we have a pretrained diffusion model
for visual generation and a multi-modal LLM for multi-modal
understanding. We then connect these two components, form-
ing what we call Connector-based Joint Models. Regarding
how to connect these two parts, many existing works [127]-
[129] directly use the LLM as the controller and the diffusion
model as a tool for visual generation, which is a common
paradigm in tool learning. Although works like tool learning
can enable the models with visual generation abilities, they
easily suffer from generation failure when meeting multi-
modal generation conditions. For example, when we want
to generate “a specific girl (described with a given image)
and a specific dog (described with a given image) playing
on the grass”, the tools available are only SOTA text-to-
image models. They will fail to guarantee that the specific
girl and dog occur in the generated image. In fact, there
are many conditions that cannot be described with only text,
and this kind of tool-learning method will fail. To tackle
the problem, a more advanced way is to train a learnable
connector [130]-[133], which aligns the diffusion model and
the multi-modal LLM in the same space, similar to the training
paradigm of the alignment module in multi-modal LLM. The
alignment process enables the diffusion model to receive the
LLM output multi-modal embeddings as conditions instead of
pure text descriptions, thus achieving multi-modal generation.
However, this paradigm inherits the limitations of alignment
architecture. The multi-modal LLM and the diffusion model
are pretrained respectively. The performance of the unified
model will be limited by each model. Additionally, from an
intuitive perspective, multi-modal understanding and multi-
modal generation should not be independent tasks but rather
two related tasks that could share knowledge. To train such a
model, both the MLLM and the diffusion model can be frozen,
and only the connector is trained. This maximally preserves the
capabilities of the two models, but the information bottleneck
between them can be particularly severe. Alternatively, one or
both of the models can be included in training, but this requires
a larger amount of data and computational resources to ensure
that the original abilities of the models are not compromised.
For example, in Qwen-Image [134], the MLLM is kept frozen
while the diffusion model is trained on a large dataset. This
preserves the full capability of the MLLM while endowing it
with strong generative ability.

The second possible model is a unified multi-modal-
transformer framework as shown in Fig. 8, where we do
not rely on two pretrained models, but try to use a single
model trained with both diffusion and autoregressive regular-
izations, which we refer to as Autoregressive-Diffusion Joint
Models. The multi-modal input processor will first transform
the multi-modal data into sequences that can be received by
the transformers. Then the multi-modal transformer will try to
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learn the multi-modal knowledge for both understanding and
generation. Specifically, the training objectives are designed
differently for each modality: text prediction uses an autore-
gressive regularization (computed token-wise), while image
prediction uses a diffusion regularization (computed over the
entire image, covering multiple patches). During inference,
the model dynamically switches between language modeling
and diffusion modes. In language modeling mode, it samples
tokens sequentially; upon generating the BOI token, it switches
to diffusion mode, appending a sequence of pure noise patches
corresponding to the target image size, and gradually generates
the image through T-step denoising iterations. At each step,
the model predicts the noise based on the current image
representation and updates the patch sequence until denoising
is complete. The EOI token is then appended, and the model
switches back to language modeling mode. Note that this
is a transformer-like model but not necessarily an LLM.
This is because when using transformers to generate visual
content, the full-attention mechanism is usually adopted. In
contrast, the attention mechanism adopted by LLM is causal
and uni-directional. Therefore, an adaptive or mixed attention
mechanism might be designed. This perspective is verified in
TransFusion [135] and Show-o [136]. The difference between
Transfusion and Show-o mainly lies in the diffusion model,
where TransFusion adopts continuous diffusion that is similar
to current visual diffusion models, but Show-o adopts masked
generative modeling [137], which could be regarded as discrete
diffusion regularization. Therefore, Show-o still relies on a
pixel-level visual tokenizer for image generation but might
trade off some understanding ability. Additionally, these two
works are primary attempts at combining autoregressive and
diffusion modeling methods in a single transformer-like model.
There still exist several open problems regarding what the
model architecture should be like, such as the multi-modal
input processor or the transformer-like model, which we will
discuss next.

B. Model Architecture

Compared to previous multi-modal LLM or Diffusion mod-
els that only focus on one task, i.e., generation or understand-
ing, the unified model itself should support multiple objectives.
When it comes to understanding, the model should have the
ability of conceptual abstraction and associative reasoning.
In contrast, when it comes to visual generation, besides the
overall concepts and their relations, pixel-level details are also
important. Therefore, the unified model architecture design
might be different from that of previous single-objective mod-
els. Next, we mainly discuss the possible architectures of the
multi-modal input processor and the multi-modal transformers.

1) Multi-modal input processor: To tackle the multi-modal
input text and images, two possible input processors are pre-
sented in Fig. 9. Text is consistently tackled by a text tokenizer.
However, there are some differences in the visual input. In
Fig. 9(a), we show the visual processor adopted by most early
works, where a single visual encoder is used to process the
images. Considering that the visual tokens should support the
pixel-level visual generation task, early works [3], [135], [136]
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Fig. 9. Possible frameworks of the multi-modal input processor for unified
multi-modal understanding and generation models.

generally adopt the single pixel-level (or patch-level) visual
tokens (e.g., VQVAE). The pixel-level tokens bring challenges
to the multi-modal transformer, requiring it not only to capture
the relations between image patches for visual generation but
also to visual abstract reasoning ability for understanding. In
contrast, a possible alternative multi-modal input processor
is presented in Fig. 9(b). For each image, we respectively
use a semantic encoder (e.g., CLIP-ViT) and a pixel-level
encoder (e.g., VQVAE) to obtain both semantic and pixel
tokens. Janus [120] was the first to adopt this architecture.
It introduced two separate visual encoding paths: a semantic
encoder for extracting visual features in understanding tasks,
and a pixel-level encoder for encoding images in generation
tasks. Subsequent works, such as UniToken [138], further
explored directly concatenating features of the two encoders
along the sequence dimension, allowing the model to receive
both types of features simultaneously for understanding and
generation tasks. By using a dual-encoder approach, models
can leverage both low-level pixel information and high-level
semantic information, which better enhances performance on
both understanding and generation tasks. Consequently, most
recent works adopt this architecture. Moreover, it is a more
flexible way to conduct some adaptive token selection from
the semantic and pixel tokens for fine-grained understanding.
We believe this would result in interesting research work.

2) Multi-modal Transformer: After discussing how to
tackle the multi-modal input information, the next key com-
ponent is the multi-modal transformer, which captures the
complex relations among and within modalities. As shown
in Fig. 10, on the left is a dense model, where one unified
transformer is used for both multi-modal understanding and
generation [45], [139]. Considering that understanding and
generation might share some knowledge but their objectives
are not exactly the same, it is a natural idea to utilize the
mixture of experts [140] in multi-task learning as shown in
(b). On the right of the figure, some of the experts share
the knowledge of understanding and generation, e.g., con-
cepts and their relations, some of the experts are good at
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Fig. 10. Possible architectures of the multi-modal transformer.

analyzing visual details for visual generation, and other experts
are good at conducting reasoning for better understanding.
LlamaFusion [141] and BAGEL [126] have made preliminary
explorations in this area, both using only two experts and
employing hard routing. In LlamaFusion, which uses a single
visual encoder, one expert is responsible for processing text
tokens, while the other handles visual tokens. In contrast,
BAGEL, which adopts semantic-pixel visual encoders, assigns
one expert to process text tokens and visual semantic tokens,
and the other to handle visual pixel tokens. Both works find
that their architectures outperform dense models, indicating
that unified models still face optimization challenges arising
from task-specific or modality-specific learning objectives.

In Table II, we present the performance of several recent
unified models. Due to large differences in model size and
training data volume, a fair comparison is difficult. Regarding
architecture choice: currently, there are still no large-scale
Autoregressive Models trained with massive data. The latest
Skywork UniPic demonstrates strong capabilities in generation
and editing, but its performance on understanding tasks is
not reported. In the Connector-based Joint Models category,
MetaQueries, BLIP30, and Qwen-Image all adopt Qwen2.5-vI-
7B as the MLLM, resulting in similar performance on under-
standing tasks. However, the success of Qwen-Image indicates
that increasing the scale of the diffusion model and enlarging
the training dataset can significantly boost performance in
generation and editing tasks. In the Autoregressive-Diffusion
Joint Models category, BAGEL leverages the largest model
and dataset, making it a strong competitor to Qwen-Image.
Regarding the choice of visual encoder: most recent models
adopt the dual encoder (Semantic-Pixel Visual Encoders)
architecture, which benefits both understanding and generation
tasks. Since models using MoE are still limited, it remains
unclear whether MoE brings significant advantages. We hope
that future work will explore this direction further.

In this section, we provide a discussion of the unified model
of multi-modal generation and multi-modal understanding,
from both the probabilistic modeling methods and the model
architectures. Though the discussed techniques can combine
with each other to form more architectures as well, there are
very few attempts at the unified model design, making us
believe the inspirations of many future works brought by the
discussions above.

V. DATASETS

After discussing the multi-modal understanding and gener-
ation models, multi-modal text-image and text-video datasets
are also important to implement multi-modal generative Al

[161]. In this section, we will review the literature on the
datasets for training multi-modal generative Al models. Based
on the differences in data types, we divide the datasets
into three categories: caption, conversation, and reasoning. In
addition, many multi-modal large foundation models choose
to collect the aforementioned types of data for integration
and construct their own datasets. Therefore, we denote these
datasets as the integration datasets.

A. Caption Datasets

The caption dataset aims to improve basic visual and tempo-
ral description capabilities for multi-modal LLMs and provide
the mapping relationship for text-to-image and text-to-video
models. Commonly used text-to-image datasets include SBU
Captions [162], MSCOCO [163], Conceptual Captions (CC-
3M) [164], and LAION [165]. The size of these datasets ranges
from 328K to 5B. Recently, MINT-1T has been proposed,
comprising one trillion text tokens and three billion im-
ages [166], a 10x scale-up from existing open-source datasets,
and it includes previously untapped sources such as PDFs and
ArXiv papers. Text-to-video datasets include WebVid [167],
InternVid [168], HD-VG-130M [169], YouCook2 [170], and
TextVR [171].

The caption datasets mainly serve in the following two as-
pects, i.e., (i) provide knowledge for the training of generation
models to generate images or videos based on the input text
embedding, and (ii) use text-image datasets to align the image
modality with the multi-modal LLM for understanding inputs.

B. Conversation Datasets

The conversation dataset aims at enhancing multi-modal
LLMs’ capabilities for single-turn and multi-turn conversa-
tions when asking questions about the input image or video.
Normally, a diverse set of questions would be asked about the
visual content of the image and the video, including the object
types, counting the objects, object actions, object locations,
event moment, event duration, and relative positions between
objects. With simple formatting reorganization, many visual
QA datasets could be directly constructed as conversation
datasets for multi-modal LLM training. These include basic
VQA (VQAv2 [172], GQA [173]), knowledge-based VQA
(OK-VQA [174], AOK-VQA [175]), OCR-based VQA (OCR-
VQA [176], TextVQA [177]) and VideoQA (TGIF-QA [178],
WebVidQA [179], and egocentric VQA from Ego4D [180]),
which can not only improve the visual QA capabilities for
multi-modal LLMs in conversations but also help the models
to learn more visual and temporal knowledge.

C. Reasoning Datasets

The above two types of datasets mainly focus on the
visual content itself, normally lacking in-depth reasoning
questions. Meanwhile, the reasoning datasets focus on en-
hancing multi-modal LLMs for diverse reasoning capacities,
which normally require a step-by-step reasoning process by
following rigorous logic. These include spatial reasoning
(CLEVR [181]), reading comprehension (VisualMRC [182]),
temporal reasoning (NExT-QA [183]), and spatiotemporal
reasoning (CLEVRER [184]).
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TABLE I
OVERVIEW OF MULTI-MODAL LLM, DIFFUSION, AND UNIFIED MODELS IN THIS PAPER.

Model Institution Type Classification Publication  Year Parameters
Multi-modal LLM (MLLM)
LLaVA [4] Microsoft Image LLM Alignment NeurIPS 2024 13B
BLIP-2 [28] Salesforce Image LLM Alignment ICML 2023 12B
MiniGPT-4 [34] KAUST Image LLM Alignment ICLR 2024 7B
Qwen-VL [142] Alibaba Image LLM Alignment ArXiv 2023 7B
Flamingo [33] DeepMind Image LLM Alignment NeurIPS 2025 3B
Fuyu [37] Adept Image LLM Early-Fusion - 2023 8B
Gemini [29] Google Image LLM Early-Fusion ArXiv 2023 -
Claude3 [143] Anthropic Image LLM Early-Fusion - 2024 -
VideoChat [52] Shanghai AI Lab  Video LLM Alignment ArXiv 2023 7B
VideoLLaMA [53] Alibaba Video LLM Alignment EMNLP 2023 7B
VideoLLaMA?2 [55] Alibaba Video LLM Alignment ArXiv 2024 7B
Video-ChatGPT [54] MBZUAI Video LLM Alignment ACL 2023 7B
LLaVA-OneVision [19] ByteDance Video LLM Alignment TMLR 2024 7B
MiniCPM-V [144] OpenBMB Video LLM Alignment ArXiv 2024 8B
VILA-1.5 [145] NVIDIA Video LLM Alignment ArXiv 2023 7B
Pengi [146] Microsoft Speech LLM Alignment NeurIPS 2023 1B
Salmonn [147] ByteDance Speech LLM Alignment ICLR 2024 13B
Qwen-Audio [148] Alibaba Speech LLM Alignment ArXiv 2023 7B
OSUM [149] NPU Speech LLM Alignment ArXiv 2025 7B
VALL-E [72] Microsoft Speech LLM Early-Fusion ArXiv 2025 7B
SpeechGPT [73] Fudan University ~ Speech LLM Early-Fusion EMNLP 2023 7B
AudioPalLM [74] Google Speech LLM Early-Fusion ArXiv 2023 8B
Diffusion Model
GLIDE [88] OpenAl Text-to-Image Pixel-Based ICML 2022 5B
Imagen [89] Google Text-to-Image Pixel-Based NeurIPS 2022 3B
Stable Diffusion [90] LMU Text-to-Image Latent-Based CVPR 2022 1B
DALL-E2 [91] OpenAl Text-to-Image Latent-Based ArXiv 2022 6B
DiT [97] Meta Text-to-Image Latent-Based ICCV 2023 1B
PixArt-a [98] Huawei Text-to-Image Latent-Based ICLR 2025 1B
Text2Video-Zero [101] Picsart Al Text-to-Video Latent-Based ICCV 2023 1B
Latent-Shift [102] Meta Text-to-Video Latent-Based ArXiv 2023 2B
VDM [103] Google Text-to-Video Latent-Based NeurIPS 2022 -
Make-a-video [104] Meta Text-to-Video Latent-Based ICLR 2024 10B
AnimateDiff [105] Shanghai AI Lab  Text-to-Video Latent-Based ICLR 2024 1B
Latte [106] Shanghai AI Lab  Text-to-Video Latent-Based TMLR 2025 1B
CogVideo [150] Z.Al Text-to-Video Latent-Based ICLR 2023 15B
Wan [151] Alibaba Text-to-Video Latent-Based ArXiv 2025 14B
HunyuanVideo [152] Tencent Text-to-Video Latent-Based ArVix 2024 13B
Vidu [153] Shengshu Text-to-Video Latent-Based ArXiv 2024 -
DiffWave [109] Baidu Text-to-Speech ~ Vocoder ICLR 2021 6M
WaveGrad [110], [113] Google Text-to-Speech ~ Vocoder ICLR 2021 23M
Grad-TTS [111] Huawei Text-to-Speech  Acoustic Model ICML 2021 30M
Diff-TTS [112] Neosapience Text-to-Speech  Acoustic Model Interspeech 2021 13M
Unified Model

VL-GPT [116] Tencent Unified Model Autoregressive ArXiv 2023 8B
Chameleon [3] Meta Unified Model ~ Autoregressive ArXiv 2024 7B
Emu?2 [119] BAAI Unified Model  Autoregressive CVPR 2024 37B
Emu3 [48] BAAI Unified Model Autoregressive ArXiv 2024 8B
LlamaGen [117] ByteDance Unified Model  Autoregressive ArXiv 2024 3B
AnyGPT [118] Shanghai AI Lab  Unified Model  Autoregressive ACL 2024 8B
Janus [120] DeepSeek Unified Model  Autoregressive CVPR 2025 1B
Janus-Pro [124] DeepSeek Unified Model  Autoregressive ArXiv 2025 7B
Skywork UniPic [154] Skywork Unified Model  Autoregressive ArXiv 2025 2B
Visual GPT [127] Microsoft Unified Model  Joint AR-Diffusion  ArXiv 2023 -
HuggingGPT [128] Microsoft Unified Model  Joint AR-Diffusion  NeurIPS 2024 -
MLLM-Tool [129] Meituan Unified Model Joint AR-Diffusion WACV 2025 13B
Kosmos-G [130] Microsoft Unified Model  Joint AR-Diffusion ICLR 2024 2B
CoDi-2 [131] Microsoft Unified Model  Joint AR-Diffusion = CVPR 2024 8B
Seed-X [132] Tencent Unified Model Joint AR-Diffusion  ArXiv 2024 13B
MetaQuery [155] Meta Unified Model  Joint AR-Diffusion  ArXiv 2025 7B
BLIP3o [133] Salesforce Unified Model  Joint AR-Diffusion  ArXiv 2025 8B
OmniGen2 [156] BAAI Unified Model Joint AR-Diffusion  ArXiv 2025 7B
Qwen-Omni [157], [158]  Alibaba Unified Model  Joint AR-Diffusion  ArXiv 2025 30B
Ming-Omni [159] Ant Group Unified Model  Joint AR-Diffusion  ArXiv 2025 7B
TransFusion [135] Meta Unified Model  Joint AR-Diffusion ICLR 2025 7B
Show-o [136] NUS Unified Model  Joint AR-Diffusion ICLR 2025 1B
Show-02 [160] NUS Unified Model Joint AR-Diffusion  ArXiv 2025 7B
LlamaFusion [141] Meta Unified Model  Joint AR-Diffusion  Arxiv 2024 8B
Mogao [125] ByteDance Unified Model  Joint AR-Diffusion  Arxiv 2025 7B
BAGEL [126] ByteDance Unified Model Joint AR-Diffusion  Arxiv 2025 7B
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TABLE II
COMPARISON OF RECENT MULTI-MODAL MODELS ACROSS UNDERSTANDING, GENERATION, AND EDITING BENCHMARKS.

Understanding Generation Editing

Model Date  Params Data Dual Encoder MoE
MMBench MMMU MM-Vet WISE GenEval DPGBench ImgEdit GEdit-Bench-EN
GPT-40 2025.3 - - 86.0 70.7 0.80 0.89 86.23 4.20 7.53
Autoregressive Models
Emu3 [48] 2024.9 8B - X X 58.5 31.6 37.2 0.39 0.66 80.6
Janus-Pro [124] 2025.1 7B 144M v X 79.2 41.0 50.0 0.35 0.80 84.19 - -
Skywork UniPic [154] 2025.8 2B 130M v X - - - - 0.86 85.50 3.49 5.83
Connector-based Joint Models
MetaQueries [155] 20254 7B+1.6B 25M v X 83.5 58.6 66.6 0.55 0.80 82.05
BLIP3o [133] 2025.5 7B+1.4B 25M v X 83.5 50.6 66.6 0.62 0.84 81.6 - -
OmniGen?2 [156] 2025.6 3B+4B 66M v X 79.1 53.1 61.8 - 0.80 83.57 3.44 6.42
Qwen-Image [134] 2025.8 7B+20B >1000M v X 83.5 58.6 67.1 - 0.87 88.32 4.27 7.56
Autoregressive-Diffusion Joint Models
Mogao [125] 2025.5 7B - v v 75.0 442 - - 0.89 84.33 - -
BAGEL [126] 2025.5 14B 1600M v v 85.0 55.3 67.2 0.52 0.88 85.07 3.20 6.52
Show-02 [160] 2025.6 7B 66M v X 79.3 48.9 - - 0.76 86.14 - -
TABLE III
COMMON DATASETS
Dataset type Modalities Datasets
Captions Text-Image SBU Captions [162], MSCOCO [163], CC-3M [164], LAION [165], MINT-1T [166]
P ) Text-Video WebVid [167], InternVid [168], HD-VG-130M [169], YouCook2 [170], TextVR [171]
Conversation Text-Image VQAV2 [172], GQA [173], OK-VQA [174], AOK-VQA [175], OCR-VQA [176], TextVQA [177]
Text-Video TGIF-QA [178], WebVidQA [179], EgoQA [180]
Reasonin Text-Image CLEVR [181], VisualMRC [182]
& Text-Video NExT-QA [183], CLEVRER [184]
Intergration Text-Image LLaVA-Instruct [32]

Text-Video&Image

Video-LLaVA [139], VideoChat2 [185], VideoLLaMa2 [55]

D. Integration Datasets

Due to the strong generalization ability of multi-modal
LLMs, their training data is not limited to only one single task,
such as caption, conversation, or reasoning, instead requiring
comprehensive pretraining for both simple and complex visual
modal tasks. Therefore, many multi-modal large model works
often do not use a single visual task dataset. Instead, they select
subsets of several datasets from each category mentioned
above for integration and adjustment, forming instruction
training data that employs both image and video data for
different visual modal tasks. For visual instruction tuning,
LLaVA [32] is the first multi-modal LLM, which i) leverages
text-only GPT-4 [186] to expand the existing bounding box,
and ii) employs caption dataset (e.g., MSCOCO [163]) as
multi-modal instruction tuning data. In addition, Liu et al.
propose LLaVA-Instruct, which is built on a subset of the CC-
3M dataset and contains 58K in conversations, 23k in detailed
descriptions, as well as 77k in complex reasoning records.
Following the development of visual instruction tuning, many
video LLMs such as Video-LLaVA [139], VideoChat2 [185],
and VideoLLaMa2 [55], are proposed, utilizing the combi-
nation of caption, conversation, and reasoning datasets under
both text-image and text-video modalities.

VI. FUTURE DIRECTIONS

Last but not least, we explore challenging problems deserv-
ing further investigation and share our insights on promising
future directions for multi-modal generative Al

A. Unified Model for Video Understanding and Generation

In Section IV, we primarily discuss the unified models for
image understanding and generation. Given the large amount
of video data in the wild, we believe there will be an urgent
need to extend the unification to videos [187]-[189]. Among
the three architectures introduced in Fig. 8, bridging the multi-
modal LLM and video diffusion model with a connector [190],
[191] can be achieved in a way similar to images. However,
adapting the other two architectures to videos faces significant
challenges due to i) the increased computational demands
caused by longer sequences, as well as ii) the difficulty in
learning spatiotemporal cues. For instance, in an autoregres-
sive model, encoding individual video frames separately using
a 2D visual tokenizer fails to capture the essential temporal
motion information. VideoPoet [192], which employs a 3D
video tokenizer [193], encodes a 17-frame video (spanning
2.125 seconds) into 1280 tokens, limiting its ability to generate
longer videos. VideoLaViT [194] introduces an efficient video



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

representation model by decomposing videos into keyframes
and temporal motions, training separate tokenizers for each of
them, which significantly improves computational efficiency.
However, the training cost is still too high when scaling to the
large amount of web-scale video data. Similarly, using a single
model trained with both diffusion and autoregressive regular-
izations also encounters the same challenges, where modeling
complex relations such as causal attention and spatiotemporal
attention within the model remains unexplored. Therefore, it
deserves more effort in advancing unified generative Al for
video understanding and generation.

B. Benchmark for the Unification

On the one hand, despite some pioneering work on studying
unified models [135], [136] for understanding and generation,
the corresponding evaluations are conducted separately in a
non-unified way. For instance, existing works use specific
benchmarks for understanding tasks, such as Flickr30k [195]
and VQAV2 [172], while relying on different benchmarks for
generation tasks, such as MSCOCO [163] and GenEval [196].
On the other hand, a unification benchmark offers the ad-
vantage of unified metrics and rankings, providing a more
comprehensive and fair assessment of model performance
across both tasks. However, designing such a benchmark is
challenging, as it requires a vast amount of visual data with
human annotations in various forms, including labels, rank-
ings, and natural language descriptions. More importantly, the
evaluation should ideally reflect the mutual promotion between
understanding and generation. In summary, the challenges for
creating a unification benchmark are threefold,

1) Dataset construction. The visual data should be rep-
resentative, diverse, and abundant, with high-quality
annotations for multiple tasks.

Ranking criteria. Models should be ranked based on
a combination of understanding and generation metrics,
ensuring a balanced evaluation of both capabilities.
Mutual promotion. The benchmark should include
datasets or tasks that effectively demonstrate how un-
derstanding and generation enhance each other.

2)

3)

This being the case, developing such a benchmark is crucial
for pushing forward the research on the unification of under-
standing and generation, making it a promising area for future
investigation.

C. Multi-modal Graph Generative Al

Graph serves as a powerful and versatile data structure
used to model flexible relationships and connections between
entities, being capable of modeling both naturally occurring
structural instances, e.g., protein and molecular structures, and
the relations between entities across diverse modalities, e.g.,
multi-modal knowledge graphs. Therefore, we introduce the
concept of Multi-modal Graph Generative Al as a future
research direction, where 1) multi-modal information can be
utilized for graph generation and 2) structural relations can be
used to facilitate multi-modal content generation.

1) Leveraging multi-modal information for graph gener-
ation: Current multi-modal research predominantly focuses
on modalities with regular structures with fixed degrees of
freedom, e.g., texts (sequences) and images (grids). How-
ever, many real-world scenarios containing various modalities
exhibit highly irregular structures with arbitrary degrees of
freedom, e.g., protein structures [197], molecular graphs [198],
scene graphs [199], etc. Accurately understanding and gener-
ating graphs across these modalities is an important direction
for future research. For instance, Yao et al. [200] explore
text-to-graph generation by leveraging the domain knowledge
of LLMs, and Liu et al. [201] explore text-to-molecular
graph generation by integrating the graph, image, and text
information. However, there are several challenges for multi-
modal graph generation: i) Understanding Structures. Given
the high degree of irregularity in graphs, aligning them with
various modalities poses significant difficulties. ii) Generating
Structures. While mainstream approaches utilize autoregres-
sive methods for generating discrete sequence information and
employ diffusion models for generating continuous grid infor-
mation, the complexity of graph structures tends to necessitate
new techniques for multi-modal graph generation.

2) Leveraging structural relations to facilitate multi-modal
content generation: Traditional multi-modal learning method-
ologies often assume that data from different modalities are in-
dependent, whereas there can be strong intrinsic relationships
across modalities in the real world [202], [203]. For example,
the descriptions, chirps, and images of birds are more closely
related to each other than those of other species, such as dogs
and fish. Leveraging graph structure to capture these multi-
modal associations may help to understand and generate new
content. Ektefaie et al. [204] explore the combination of mul-
tiple data modalities via cross-modal dependencies and geo-
metric relationships to develop multi-modal architectures, e.g.,
image-intensive, knowledge-grounded, and language-intensive
models, in order to process diverse datasets. Yoon et al. [205]
capture intricate relationships between multiple modalities
through graphs to enhance pretrained language models with
multi-modal context for generative tasks. Nevertheless, several
challenges remain: 1) The feature spaces of different modalities
are heterogeneous, thus aligning them in a unified space
via a multi-modal graph poses significant challenges. ii) The
connections across instances from different modalities can be
heterophilous, e.g., the meow of black and white cats may be
very similar, but their visual appearances differ significantly,
leading to varying degrees of weights regarding similarity
for the connections across modalities within the multi-modal
graph. iii) There may be substantial biases among different
modalities, e.g., textual and visual modalities may dominate
the learning process due to the ease of collecting texts and im-
ages via the Internet, while other modalities, such as acoustic
perception and tactile sense, are much more difficult to collect.

Multi-modal graph generative Al holds significant poten-
tial applications: generating molecular graphs from texts can
facilitate scientists in rapidly creating and editing chemical
compounds with desired properties through natural language
interactions, thereby accelerating the drug discovery process.
Additionally, leveraging multi-modal graphs allows generative
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Al systems to reference entities associated with different
modalities, thereby enhancing their ability to make cross-
modal associations. Therefore, we encourage efforts in pro-
moting future research in multi-modal graph generative Al.

D. Lightweight Multi-modal Generative Al

We define Lightweight Multi-modal Generative Al as
the family of efficient Artificial Intelligence models capable
of generating diverse types of data, including texts, images,
audios, etc., while being optimized for low computational cost,
fast inference, and deployment on edge devices, e.g., smart-
phones, IoT devices. Lightweight Multi-modal Generative Al
has broad applications in various scenarios, including mobile
& edge Al, IoT & embedded systems, and fast prototyping
& low-cost deployment. We deem lightweight multi-modal
generative Al as another promising future research direction
from the following three perspectives.

1) Lightweight diffusion models face challenges from sam-
pling steps, neural architectures, and tasks. The iterative sam-
pling process is a critical limitation of diffusion models, bring-
ing high computational cost and constraining real-time appli-
cations. Although substantial works (e.g., distillation [206],
consistency model [207], [208], and flow matching [86], [209])
engage in few-steps (e.g., 4 steps) or single-step sampling,
fewer-steps sampling in general may cause remarkable quality
degradation. Tasks that require high quality [210], [211] still
adopt multi-step sampling. Thus, it is very important to im-
prove the few-step sampling in future investigations. Besides,
the massive network architectures of diffusion models also
contribute to the issue of high computational costs, which
tends to be even more severe as the model size increases
rapidly. Previous methods try to obtain lightweight architec-
tures via compression techniques such as quantization [212]-
[214], pruning [215], feature cache [216], [217], and neural
architecture search [218], [219], etc. Although these works
have achieved remarkable success, their designs are mostly
tailored for the setting of multi-step sampling, either being
not applicable or suffering from poor performances in few-
step sampling. Therefore, exploring sampling-steps-agnostic
compression methods is an important future direction as well.
Moreover, traditional compression methods mainly focus on
UNet-based models. Existing literature [97], [100] indicates
that DiT [97] may be a better architecture, resulting in the
fact that more attention will be paid to DiT-based architec-
tures. Moreover, previous compression methods mainly focus
on class-condition or text-to-image generation tasks, rarely
engaging in other challenging tasks such as video generation.
Exploring effective compression methods for these tasks will
be meaningful as well.

2) Lightweight multi-modal LLMs [220], such as vi-
sion token compression [139], [221] and efficient structures
(e.g., MoE [222] and Mamba [223]), have been explored in
quite a few studies. However, classic powerful compression
methods (e.g., quantization and pruning) are largely unex-
plored for multi-modal LLM. Both diffusion models [213]
and LLMs [224] have gained successful compression rates via
the utilization of quantization and pruning, giving us much
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confidence in exploring these methods for multi-modal LLMs
in future research.

3) Lightweight unified model for multi-modal understand-
ing and generation has been largely ignored in literature. How-
ever, given that the unified models typically have numerous
parameters, there will be a huge need for the corresponding
lightweight versions. As such, developing effective lightweight
models for the unification of understanding and generation will
be a frontier research direction with no doubt.

E. Multi-modal Generative Al in Dynamic Environment

The multi-modal generative models discussed so far in this
paper mostly do not interact with the dynamic physical world.
In the future, multi-modal generative Al agents are expected
to behave like humans, where they can i) perceive the multi-
modal environments, ii) conduct reasoning and planning based
on the perception and their current states, iii) take action to
interact with the environments, and iv) improve themselves
via feedbacks from the environments. A very related topic
is multi-modal embodied Al [225], [226], where multi-modal
LLMs are used as the controller. However, existing embodied
Al methods are all parameter-fixed upon deployment, limiting
their abilities to self-improve in dynamic environments, where
new concepts may arise in the course of time. The new
concepts may cause the Out-of-Distribution (OOD) challenges
for the pretrained multi-modal generative models, which fail
to take the right action under these new concepts. Therefore,
future works need to deal with the problem of i) when to
update the model parameters, and ii) which part of the model
parameters should be updated [227], e.g., the vision or the
language modules.

VII. CONCLUSION

In this paper, we thoroughly discuss multi-modal generative
Al, with a particular focus on multi-modal LLMs, multi-
modal diffusion models, as well as the unifications of LLMs
and diffusions for multi-modal understanding and generation.
We comprehensively overview two well-documented multi-
modal generative Al paradigms, i.e., multi-modal LLMs for
multi-modal understanding and diffusion models for visual
generation. We deeply analyze the underlying mathematical
principles, fundamental architecture designs, and practical ap-
plication scenarios, indicating how these models can contribute
to different aspects of multi-modal generative Al. We further
present the necessities for the unification of understanding and
generation, exploring the theoretical possibilities and potential
designs towards building unified models that jointly support
understanding and generation. The unification may come
across challenges such as trade-offs between autoregressive
and diffusion modeling, as well as different choices between
dense and MoE architectures. Beyond summarizing existing
methods, we also highlight promising future directions and
identify the corresponding key challenges. We believe that the
discussions together with the insights provided in this paper
will serve as a foundation for future research and foster the
development of more powerful, efficient, and generalizable
multi-modal generative Al
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